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We consider the interaction between two rods embedded in a fluctuating surface. The modification of
fluctuations by the rods leads to an attractive long-range interaction between them. We consider fluctuations
governed by either surface tension~films! or bending rigidity~membranes!. In both cases the interaction falls
off with the separation of the rods as 1/R4. The orientational part of the interaction is proportional to
cos2@u11u2# in the former case and to cos

2@2(u11u2)# in the latter, whereu1 andu2 are angles between the rods
and the line joining them. These interactions are somewhat reminiscent of dipolar forces and will tend to align
collections of such rods into chains.@S1063-651X~96!07012-2#

PACS number~s!: 87.22.2q, 82.65.Dp, 34.20.2b

I. INTRODUCTION

In addition to their structural role of forming the exterior
frames of the cell and its interior organelles and vesicles,
lipid bilayers act as the host and regulator of many biophysi-
cal and biochemical reactions@1,2#. Inter- and intracellular
recognition and transport, adhesion, regulation of ion con-
centrations, and energy conversion are but a few of the pro-
cesses taking place at the membrane. These tasks are carried
out by a variety of proteins, glycolipids, and other macro-
molecules that move through the many different lipids that
make up the bilayer. The resulting membrane is thus far from
uniform; there are even examples in which inhomogeneities
occur on a larger scale, e.g., domains of phase separated
lipids or two-dimensional protein assemblies. In modeling
the physical properties of the cell, it is thus essential to have
a good understanding of the interactions between inclusions
in fluid membranes.

The pursuit of ‘‘biologically inspired’’ materials, which
do not possess the full complexity of their natural counter-
parts, yet retain some of their useful features, is quite active.
Artificial protein assemblies within lipid membranes are now
routinely produced in the laboratory@3–5#. Such model-
membrane systems have potential applications for targeted
drug delivery and may also lead to applications such as
nanoscale pumps, templates, functionalized interfaces, and
chemical reactors. The appropriate design of such artificial
membranes again requires an understanding of how inclu-
sions modify the physical properties of the bilayer and how
the membrane in turn contributes to the interactions between
inclusions. The forces between the inclusions can be broadly
subdivided into two categories@6#. The first category in-
cludes interactions that are present in the bulk of the solvent.

They include the van der Waals interaction, which falls off
with separationR as 1/R6 at long distances. The Coulomb
interaction is strongly screened under physiological condi-
tions. ~Typical ion concentrations are a few hundred milli-
molar, which give a screening length of less than 10 Å .!
Hydration and structural forces are also short ranged. The
second category includes interactions that are mediated by
the membrane itself: the inclusion disturbs the lipid bilayer
and this disturbance propagates to neighboring inclusions
~cf. @2,7,8,10# and references therein!. When macroscopic
thermal fluctuations are unimportant~we refer to this case as
T50), the resulting interactions tend to be short ranged. For
example, if in the region around an inclusion the membrane
is forced to deviate from its preferred thickness (;40 Å!, the
resulting disturbance in the bilayer decays~heals! over a
length of order this thickness@10#. Two nearby inclusions
then experience an interaction that falls off exponentially
with this characteristic length.

There are also long-range interactions that are mediated
by the membrane. To describe such interactions, it should be
possible to neglect the microscopic properties of the mem-
brane and its molecular lipid bilayer structure and focus on
its macroscopic properties. In the long-distance limit, the
membrane is well described by the elastic Hamiltonian
@11,12#

H5E dSFs1
k

2
H21k̄K G , ~1!

wheredS is the surface area element andH andK are the
mean and Gaussian curvatures, respectively. The elastic
properties of the surface are then described by the tension
s and the bending rigiditiesk andk̄. A finite surface tension
is in general the strongest coupling in Eq.~1! and dominates
the bending terms at long wavelengths. This term is present
for films on a frame, interfaces at short distances, and possi-
bly membranes subject to osmotic pressure differences be-
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tween their interior and exterior. On the other hand, for un-
stressed vesicles, the surface tension is quite small and may
be neglected at wavelengths well below the size of the
vesicle@13–16#. In this case, the energy cost of fluctuations
is controlled by the rigidity terms. For simplicity we shall
refer to surface-tension-dominated surfaces as films and to
rigidity controlled ones as membranes.

The long-range interactions between inclusions in a mem-
brane that result from Eq.~1! were examined in Ref.@8#. If
the inclusions are asymmetric across the bilayer and impose
a local curvature, even atT50, there is a long-ranged repul-
sive interaction that falls off with distance as 1/R4. The en-
ergy scale of this interaction is set byk and k̄. On the other
hand, if thermal fluctuations of the membrane are included
(TÞ0), there is a 1/R4 interaction forgeneric inclusions.
The only requirement is that the rigidity of the inclusion
differs from that of the ambient membrane@8#. In particular,
the interaction is attractive if the inclusions are stiffer than
the membrane. The magnitude of this fluctuation-induced in-
teraction is set bykBT and is totally independent of the ri-
giditiesk and k̄ @8,9#.

In a recent report, we considered the dependence of the
fluctuation-induced (TÞ0) interaction between rodlike in-
clusions on their orientations@17#. The rods are assumed to
be sufficiently rigid so that they do not deform coherently
with the underlying membrane. They can thus only perform
rigid translations and rotations while remaining attached to
the surface. As a result, the fluctuations of the membrane are
constrained, having to vanish at the boundaries of the rods.
Consider the situation depicted in Fig. 1, with two rods of
lengthsL1 and L2 at a separationR@Li . For fluctuating
films (sÞ0), there is an attractive fluctuation-induced inter-
action given by

VF
T~R,u1 ,u2!52

kBT

128

L1
2L2

2

R4 cos2@u11u2#1O~1/R6!, ~2!

whereu1 andu2 are the angles between the rods and the line
adjoining their centers, as indicated in Fig. 1. This angular
dependence is actually thesquareof that of a dipole-dipole
interaction in two dimensions, withL1 andL2 as the dipole
strengths. The fluctuation-induced interaction on a mem-
brane (s50) is very similar and given by

VM
T ~R,u1 ,u2!52

kBT

128

L1
2L2

2

R4 cos2@2~u11u2!#1O~1/R6!.

~3!

The orientational dependence is thesquareof a quadrupole-
quadrupole interaction, with the unusual property of being
minimized for both parallel and perpendicular orientations of
the rods. Note that the strength of the interaction is the same
in both cases. The above fluctuation-induced interactions de-
cay less rapidly at large distances than van der Waals forces
and may play an important role in aligning asymmetric in-
clusions in biomembranes. Since orientational correlations
are often easier to measure than forces, this result may also
be useful as a probe of the fluctuation-induced interaction.
Finally, this interaction could give rise to new two-dimen-
sional structures for collections of rodlike molecules. In par-
ticular, the resemblance of the orientational part of the inter-
action to dipolar forces suggests that a suitable way to mini-
mize the energy of a collection of rods is to form them into
chains.~If the rods are not collinear, the interactions cannot
be minimized simultaneously.! Such chainlike structures are
observed for ferromagnetic particles controlled by similar
forces@18#.

In both @8# and @17#, the calculational details are only
briefly sketched. In this article we provide a detailed deriva-
tion of the fluctuation-induced interaction and justify the ap-
proximation of only working to leading order in the inclusion
tilt. Asymmetric inclusions have also been recently consid-
ered in@19#, where results similar to ours are reported.

II. MEMBRANES

We start with a thermally fluctuating planar membrane
subject to the Hamiltonian in Eq.~1!. We assume that the
size of the membraned is well below the persistence length
j @13#. In this limit, the membrane undergoes only small
fluctuations about a flat state. We may then parametrize the
membrane surface with a height functionu(r ) and approxi-
mate the full coordinate-invariant Hamiltonian of Eq.~1! by
the quadratic form

H05
k

2ER2d2r @¹2u~r !#2. ~4!

Since we assumed is large ~compared toR and Li), we
denote the~finite but large! reference plane byR2.

Now consider the situation depicted in Fig. 1, where two
rigid, rodlike objects are attached to the membrane. We shall
represent the rods by narrow rectangles of lengthsL1 and
L2 and widths e1 and e2, ultimately taking the limit of
e i→0. We assume that the rods are infinitely rigid and there-
fore must each lie in a plane. However, each rod is still free
to rigidly translate up and down and rotate. We can param-
etrize all possible configurations of the rods by

u~r !urPLi
5ai1bi•r for i51,2, ~5!

where we have also usedLi to denote thei th rod. The con-
stantsai andbi parametrize the planes that the rigid rods are
constrained to lie in; variations inai and bi correspond to
rigid translations and rotations, respectively.

FIG. 1. Two rod-shaped inclusions embedded in a membrane.
The rods are separated by a distanceR. The i th rod has length
Li , width e i , and makes an angleu i with the line joining the
centers of the two rods.
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To calculate the partition function, we follow a procedure
similar to Ref.@8# and sum over all possible configurations
of the membrane, weighted by the corresponding Boltzmann
factor and subject to the constraints imposed by the rods via
Eq. ~5!. The constraints may be implemented with the aid of
d functions as in Ref.@20#, leading to

Z5E Du~r !)
i51

2 E daid
2bi

3 )
r 8PLi

d„u~r 8!2ai2bi•r 8…expF2
H0

kBT
G . ~6!

In Eq. ~6! we have included only the leading term in an
expansion in powers ofbi . As described in Appendix A,
higher-order terms come from the projection ofLi onto the
x-y plane, as well as from the integration measure forbi ,
which is on the sphere of unit normals. Sincebi controls the
gradient ofu(r ) at the boundary ofLi , the expansion inbi is
in the same spirit as the gradient expansion for the Hamil-
tonian in Eq.~4!. In Appendix A we further demonstrate that,
just as in the case of anharmonic terms that have been ne-
glected in Eq.~4!, the higher-order terms inbi left out from
Eq. ~6! are suppressed in the limitd!j. Expressing thed
functions as functional integrals over auxiliary fieldski(r )
defined on the rods, we obtain

Z5E Du~r !)
i51

2 E daid
2biE Dki~r !

3expF2
k

2kBT
E
R2
d2r @¹2u~r !#2

1 i(
i51

2 E
Li

d2r iki~r i !@u~r i !2ai2bi•r i #G . ~7!

Integrating outu(r ), ai , andbi , then gives

Z5)
i
E Dki~r !dS E

Li

d2r iki~r i !D d2S E
Li

d2r irki~r i !D
3expF2

kBT

2k (
i , j51

2 E
Li

d2r iE
L j

d2r jki~r i !

3G~r i2r j !kj~r j !G , ~8!

where

G~r2r 8!5S 1¹4D
rr 8

5
1

8p
ur2r 8u2lnur2r 8u. ~9!

Equation~8! is analogous to the partition function for a pair
of plasmas confined to the interior of rodsL1 andL2. The
d functions impose the constraints that the net charge and
dipole moments vanish within each rod. When the distance
R between rods is much bigger than their size~i.e., Li!R),
we may approximateG(r12r2) in Eq. ~8! by a multipole

expansion and keep only the leading term, which comes
from the quadrupole moments

Qab
~ i ![E

Li

d2rr ar bki~r !. ~10!

After inserting

15)
i51

2 E dQ~ i !dg~ i !expF i(
a,b

gab
~ i !SQab

~ i !2E
Li

d2rr ar bki~r ! D G
~11!

into Eq. ~8! and performing the multipole expansion, we ob-
tain

Z5)
i
E Dki~r !E dQ~ i !dg~ i !daid

2bi

3expH 2
kBT

2k (
i
E
Li

d2rd2r 8ki~r !G~r2r 8!ki~r 8!

2 i(
i
E
Li

d2rki~r !@ai1bi•r1r•g~ i !
•r #

1 i(
i
gab

~ i !Qab
~ i !2

kBT

2k
v@Q~1!,Q~2!#J , ~12!

where we have recast thed functions in Eq.~8! in terms of
integrals overai and bi . The quadrupole-quadrupole inter-
action is given by

v@Q~1!,Q~2!#5
1

8pR2 @Qaa
~1!Qbb

~2!12Qab
~1!Qab

~2!

22Qaa
~1!R̂•Q~2!

•R̂22Qaa
~2!R̂•Q~1!

•R̂

28R̂•Q~1!
•Q~2!

•R̂

18R̂•Q~1!
•R̂R̂•Q~2!

•R̂#1O~1/R3!

~13!

~with implicit summation over repeateda andb). Note that
the Green’s function in Eq.~9! should also contain homoge-
neous terms, which reflect the boundary conditions at the
outer edge of the membraner5d. However, we have only
used the explicit form of the Green’s function in computing
the leading terms in the multipole expansion. As long as
L1 andL2 are sufficiently far~compared toR) from the edge,
the particular choice of boundary conditions atr5d does not
modify the leading terms in this expansion. The homoge-
neous terms can therefore be safely suppressed in Eq.~9!.

We first isolate the integration overk1(r ) in Eq. ~12!,

I 1[E Dk1~r !expH 2
kBT

2k E
L1

d2rd2r 8k1~r !G~r2r 8!k1~r 8!

2 i E
L1

d2rk1~r !@a11b1•r1r•g~1!
•r #J . ~14!

To perform the above integration, the Green’s function in
Eq. ~9! has to be inverted in the finite regionL1. In order to
do this, we introduce an auxiliary fieldh(r ) and write
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I 15E Dh~r !expF2
k

2kBT
E
R2
d2r @¹2h~r !#2G

3 )
r 8PL1

d„h~r 8!2a12b1•r2r•g~1!
•r …. ~15!

This is just the partition of a membrane constrained by a
single rod. After evaluating the contribution onL1 ~via the
d function!, we are left with

I 15expF2
2k

kBT
e1L1~gaa

~1!!2G
3E8Dh~r !expF2

k

2kBT
E
R22L1

d2r @¹2h~r !#2G ,
~16!

where the prime indicates that the functionh(r ) and its nor-
mal gradient are constrained to satisfy the following condi-
tions on the boundary]L1 of L1:

h~r !urP]L1
5a11b1•r1r•g~1!

•r ,

]h~r !

]n
urP]L1

5
]

]n
~a11b1•r1r•g~1!

•r !. ~17!

Now let h0(r ) denote a solution to the biharmonic equation

¹4h050 ~18!

on R22L1 with the boundary conditions of Eqs.~17!. We
then set

h~r !5h0~r !1dh~r !,

where bothdh(r ) and its normal gradient are zero on the
boundary ofL1. Following this change of variables,

I 15AexpF2
2k

kBT
e1L1~gaa

~1!!2G
3expF2

k

2kBT
E
R22L1

d2r @¹2h0~r !#2G , ~19!

where

A5E Ddh~r !expF2
k

2kBT
E
R22L1

d2r @¹2dh~r !#2G
is a normalization constant, independent ofa, b, and g,
which does not affect the remaining computations. In order
to solve Eq.~18! we must specify the boundary conditions at
r5d, which are the same as those foru(r ). As discussed
earlier, the results should be independent of this choice, and
it is convenient to select

hur5d5
]h

]r U
r5d

50. ~20!

As shown in Appendix B, the solution for the case when the
rod is along they axis, in the limitd@L1, gives

E
R22L1

d2r @¹2h0~r !#252p~L1gxy
~1!!21

1

ln~4d/L1!
@s1b1x

2

1s2b1y
2 #1O~L1 /d!, ~21!

wheresi are numerical constants. The second term on the
right-hand side of Eq.~21! is examined in Appendix A,
where the irrelevance of higher-order terms inb is demon-
strated. In the limitd@L1, it suffices to keep only the first
term on the right-hand side of Eq.~21!, which gives

I 15A expH 2
k

kBT
@2e1L1~gaa

~1!!21p~L1gxy
~1!!2#J . ~22!

The result of thek2(r ) integration in Eq.~12! is similar, with
the index 2 replacing 1 and with the coordinate axis appro-
priately rotated to align with the second rod. The overall
expression for the partition function now reads~dropping
unimportant multiplicative constants!

Z5)
i51

2 E dQ~ i !dg~ i !expH 2
pk

kBT
@~L1gx8y8

~1!
!2

1~L2gx9y9
~2!

!2#J expH 2 i(
i
gab

~ i !Qab
~ i !

2
kBT

2k
v@Q~1!,Q~2!#J , ~23!

where we have set the widths of the rods to zero~i.e., taken
the e i→0 limit!. The primed indicesx8,y8,x9,y9 indicate
that the corresponding components are with respect to the
coordinate frames whereL1iy8 and L2iy9. We define an
unprimed coordinate system such that thex axis is parallel to
R̂ and the two rods make angles ofu1 andu2 with respect to
the x axis as in Fig. 1. Integration overg yields

Z5)
i51

2 E dQ~ i !d~Qxx
~ i !cos2u i1Qxy

~ i !sin2u i

1Qyy
~ i !sin2u i !d~Qxx

~ i !sin2u i2Qxy
~ i !sin2u i

1Qyy
~ i !cos2u i !expH 2

kBT

2k F(
i

1

2pLi
2

3S 12 ~Qyy
~ i !2Qxx

~ i !!sin2u i1Qxy
~ i !cos2u i D 2G J

3expH 2
kBT

2k
v@Q~1!,Q~2!#J . ~24!

Since we are working in the large-R limit, the Q integra-
tions are most easily performed by expanding Eq.~24! to
second order inv. After expanding2kBT lnZ, we find the
(R,u1 ,u2)-dependent part of the free energy given in Eq.
~3!. We can rewrite this interaction in a coordinate invariant
form, in terms of the vectorR̂ and the directorsL̂1 and L̂2
along the rods, as
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VM
T 52

kBT

128

L1
2L2

2

R4 $2@2~ L̂1•R̂!~ L̂2•R̂!2L̂1•L̂2#
221%2

1O~1/R6!. ~25!

III. FILMS

We now turn to the analogous calculation for films. Again
we use a Gaussian approximation for the Hamiltonian in Eq.
~1!, but keep only the surface tension this time,

H05
s

2E d2r @¹u~r !#2. ~26!

All anharmonic corrections to the above expression are un-
important in the limitsa2@kBT, wherea is a microscopic
length. We follow a procedure similar to that described in
Sec. II, but with the differences noted below. The expression
for the partition function is similar to Eq.~6!, with H0 now
given by Eq. ~26!. For films, however, we cannot justify
keeping only the leading terms in an expansion inbi . Thus
the full rotationally invariant measure of integration on the
sphere of slopesbi should be employed~see Appendix A!.
Also, the appropriate domain replacingLi is the projected
length L̄ i[Li /A11biy

2 . After introducing auxiliary fields
ki(r ) as in Sec. II, the analog of Eq.~8! may be written as

Z5)
i
E d2bi

~11bi
2!3/2

E Dki~r !dS E
L̄ i

d2r iki~r i !D
3expF2

kBT

2s (
i , j51

2 E
L̄ i

d2r iE
L̄ j

d2r jki~r i !

3G~r i2r j !kj~r j !2 i(
i
bi•E

L̄ i

d2r ir iki~r i !G , ~27!

where

G~r2r 8!5S 1

2¹2D
rr 8

5
1

2p
lnur2r 8u. ~28!

Note that for films, the dipole moment ofki(r ) does not
vanish. ExpandingG(r2r 8) in a multipole expansion and
keeping only the leading term, which now comes from the
dipole momentspi[*rki(r ), we find

Z5)
i
E Dki~r !E dp~ i !dgidai

d2bi
~11bi

2!3/2

3expH 2
kBT

2s (
i
E
L̄ i

d2rd2r 8ki~r !G~r2r 8!ki~r 8!

2 i(
i
E
L̄ i

d2rki~r !@ai1~bi1gi !•r #1 i(
i
gi•p

~ i !

2
kBT

2s
u@p~1!,p~2!#J , ~29!

where

u@p~1!,p~2!#52
1

pR2 @p~1!
•p~2!22~p~1!

•R̂!~p~2!
•R̂!#

~30!

is the effective dipole-dipole interaction, analogous to Eq.
~13!, andgi is the variable conjugate top

( i ). We integrate out
ki(r ) as in Sec. II by introducing an auxiliary fieldh(r ). In
this case we must solve a harmonic equation onR22L̄ i ,
instead of the biharmonic Eq.~18!, with the boundary con-
dition on L̄ i ,

h0~r !urP] L̄ i
5ai1~bi1gi !•r . ~31!

The harmonic problem can be solved either by a method
similar to that described in Appendix B or by conformal
mapping. The resulting expression for the partition function
reads

Z5)
i
E dp~ i !dgi

d2bi
~11bi

2!3/2
expF2

s

2kBT

3S p

4
L̄1

2~b1y81g1y8!
21

p

4
L̄2

2~b2y91g2y9!
2D

1 i(
i
gi•p

~ i !2
kBT

2s
u@p~1!,p~2!#G , ~32!

where the meaning of the primes is the same as in Sec. II.
One can now see explicitly that the higher-order terms in the
expansion inbi are important in this case. The remaining
integrations, except those ofb1y8 andb2y9, can be performed
in a straightforward manner. The latter two integrals are
rather complicated and in order to get a simple result, we
restrict ourselves to the casesL2(L2/R2)!kBT. In this limit,
the integrals can be approximated by Gaussian forms. After
expanding2kBT lnZ, we find Eq. ~2!, which can be ex-
pressed in a coordinate invariant form, in terms of the vector
R̂ and the directorsL̂1 and L̂2 along the rods, as

VF
T52

kBT

128

L1
2L2

2

R4 @2~ L̂1•R̂!~ L̂2•R̂!2L̂1•L̂2#
21O~1/R6!.

~33!

IV. DISCUSSION

We shall now discuss some general aspects of the
fluctuation-induced interactions Eqs.~2! and~3!. The magni-
tudes are solely determined bykBT and are independent of
the tension and rigidity coefficientss andk. This is a sig-
nature of the entropic nature of the interactions. The number
of allowed modes in the membrane is independent of the
membrane elastic constants; however, it does depend on the
position and orientation of the rods. Note that, although the
total entropy of the membrane modes diverges, the contribu-
tion that depends on the rods’ orientations and separation is
finite. ~A similar effect is seen in the Casimir effect and other
fluctuation-induced interactions; cf.@20# and references
therein.! In the above calculations we have taken the rods to
be infinitely rigid. This approximation holds in the limit that
the rod elastic constants are much larger than those of the
membrane; for sufficiently large values of the membrane
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bending energy, the above results will break down. Thus if
we denote the bending rigidity of the rods byk r , we expect
the leading correction to Eq.~3! to be of orderk/k r ; similar
considerations apply for films. An explicit calculation of the
fluctuation-induced interaction for disks in the limit in which
the inclusion and membrane elastic constants are comparable
is described in@8#.

For both membranes and films, the interaction falls off
with distance as 1/R4. Since the direct van der Waals inter-
actions between inclusions still fall off as 1/R6, the forces
mediated through the two-dimensional surface will always
asymptotically dominate. Of course, the dimensional depen-
dence ofR4 is canceled by a product of lengths in the nu-
merator. For spherical inclusions, this is given by the product
of two inclusion areas~see Ref.@8#! and for rods by the
product of the squares of their lengths. Presumably, for gen-
eral shapes, there is a formula that interpolates between these
two limits. Another potential extension is to a polymer float-
ing on a membrane. The interplay between the elasticity and
shapes of a polymer and membrane, neglecting membrane
fluctuations, has been examined in@21#; an extension to the
case of a fluctuating membrane has also recently appeared
@22#. There is also interesting behavior in the opposite limit
of R!L for the interaction between two parallel semiflexible
polymers@23#.

Finally, the most interesting aspect of our calculation is
the orientational dependence of the force. This is most easily
discussed for the film, where an intermediate stage involves
calculating the angular dependence of a dipole-dipole inter-
action, which is subsequently squared. The final angular de-
pendence is thus that ofsquared dipolar interactions. Simi-
larly, the result for the membrane corresponds tosquared
quadrupolar interactions. The minimal-energy orientations
are shown in Fig. 2; note that there is a large degeneracy. We
also note that these interactions cannot be obtained by adding
two-body potentials on the rods: To find the orientational
dependence of additive forces, let us consider an interaction
U(ur 12r 2u)du1du2 between any two infinitesimal segments
of two rods of lengthL at a distanceR@L. Expanding
ur 12r 2u and integrating over the two rods leads to the inter-
action

V~R,u1 ,u2!5L2U~R!1
L4

6 SU8~R!

R
1U9~R! D

2
L4

12SU8~R!

R
2U9~R! D ~cos2u11cos2u2!.

~34!

Note that the angular dependence is now completely differ-
ent and minimized when the two rods are parallel to their
axis of separation. Presumably both interactions are present
for rods of finite thickness; the additive interaction is propor-
tional to L2(Le/R)2, where e is the thickness. The previ-
ously calculated interactions are thus larger by a factor pro-
portional to (R/e)2 and should dominate at large separations.

The unusual dependence on orientation in Eqs.~2! and~3!
could lead to new types of orientational ordering in en-
sembles of rod-shaped particles. Of course, due to the non-
additive nature of the forces, the fluctuation-induced interac-
tion should be calculated separately for each arrangement.
However, a cursory examination suggests that three-body
and higher-order interactions fall off with separation as
1/R6. Thus, forR@L, a collection of rods can be treated as if
they interact through additive pair potentials. It is amusing to
examine the minimum of such an interaction for three rods
placed on the vertices of an equilateral triangle. One possible
equilibrium configuration is a three arm star with the relative
angles of 2p/3 between the rods. Interestingly, this so-called
‘‘triskelion’’ structure is indeed formed by three rodlike
‘‘clathrin’’ proteins @1#. ~Another stable configuration has
each rod parallel to the corresponding side of the equilateral
triangle.! Of course, given the relative proximity of the three
proteins, it is not clear that the asymptotic interactions of Eq.
~3! are applicable to this case. Another generic aspect of
dipole and quadrupolar interactions is that they are frustrated
~i.e., cannot be simultaneously minimized with respect to the
orientations! if the rod centers are not aligned. There may
thus be an overall tendency to arrange rod-shaped molecules
into chains.~Naturally this effect competes with the tendency
to aggregate the inclusions together.! We hope that the
orientational-dependent interactions calculated in this paper
will provide a fresh perspective on the behavior of inclusions
in biological membranes.
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APPENDIX A: INTEGRATION OVER TILT ANGLES

In this appendix we examine the higher-order terms in the
tilts of the rodsbi and show that they may be neglected. For
simplicity we shall focus onb1; similar arguments apply to
b2. Whenever possible we drop the index and useb[b1 and
L[L1. The integration forb must be performed over all
possible orientations of the rodL in the three-dimensional
embedding space. The manifold of orientations is the unit

FIG. 2. Minimal-energy orientations for two rods in a mem-
brane@~a! and~b!# and a film@~a! only#. The energy is minimal for
all values ofu.
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sphere. In terms of the vectorb, defined in Eq.~5!, the rota-
tion invariant measure on the unit sphere is given by

dV5
d2b

~11b2!3/2
. ~A1!

The leading term of the expansion of Eq.~A1! in b, d2b, was
used as the integration measure in Eq.~6!. Additional b de-
pendence comes from the projection of the tilted rods onto
thex-y reference plane. For example, the conditions imposed
in Eq. ~5! do not really apply forrPL but rather forr in the
projected image of L, which is a rod of length
L/(11by

2)1/2. Again, in Eq. ~6! we have taken the leading
order in an expansion inb by setting 1/(11by

2)1/2'1.
We shall now demonstrate that the higher-order terms in

b can be neglected@as discussed after Eq.~6!#. The argument
is presented explicitly for terms of orderb2, but is easily
extended to higher orders. Including the first corrections to
Eq. ~7! results in

Z[E Du~r !)
i51

2

Dki~r !daid
2bi~11Gxbx

21Gyby
2!

3expF2
k

2kBT
E d2r @¹2u~r !#2

1 i(
i
E
Li

d2r iki~r i !@u~r i !2ai2bi•r i #G , ~A2!

whereGx andGy are independent ofb. If, as in Sec. II, only
the leading term is retained, the integration overb leads to
the constraint that the dipole momentk1(r ) must be zero
@see Eqs.~7! and ~8!#. Due to the higher-order terms inb,
this constraint is modified and we have to take into account
the dipole moment

p[E
L1

d2r rk1~r !. ~A3!

Following the same procedure used for the quadrupole mo-
ment in Sec. II, we introduce an auxiliary variablef, via

15E dpdf expF i f•S p2E
L1

d2r rk1~r ! D G . ~A4!

Inserting Eqs.~A4! and ~11! into Eq. ~A2! and performing
the multipole expansion gives

Z5E )
i
Dki~r !dQ~ i !daidg

~ i !db2dbdfdp

3~11Gxbx
21Gyby

2!

3expH 2
kBT

2k E
L1

d2rd2r 8k1~r !G~r2r 8!k1~r 8!

2 i ~b2f!•p2 i E
L1

d2rk1~r !@a11f•r1r•g~1!
•r #J

3•••. ~A5!

In the above equation, the ellipsis denotes factors that are
independent ofk1(r ), b, and f and identical to the corre-
sponding terms in Eq.~12! with the exception that
v@Q(1),Q(2)# is replaced byv@p,Q(1),Q(2)#, i.e., the multi-
pole energy now also depends onp. The integration over
k1(r ) is the same as in Eq.~14!, except thatb1 is replaced by
f. Thus, after substitutingf for b1 in Eq. ~21!, we are left with
the modified integrals

Z5E dbdfdp expF2
k

2kBT ln~4d/L !
~s1f x

21s2f y
2!

2 i ~b2f!•pG~11Gxbx
21Gyby

2!

3~W01W1xpx
21W1ypy

21••• !. ~A6!

In the above equation,$W0 ,W1x ,W1y , . . . % refer to the re-
sults of the remaining integrations, which are performed after
expanding exp@2kBTv(p,Q

(1),Q(2))/2k# in powers ofp and
are independent ofp, b, and f. After integrating overf and
dropping an unimportant constant, we obtain

Z5E dbdp exp@2 ib•p#~11Gxbx
21Gyby

2!

3FW02W0

kBT ln~4d/L !

2k S px2s1 1
py
2

s2
D 1•••G .

~A7!

Note that theW1x andW1y have been dropped since they are
subleading in the limitd@L. Integrating overb andp then
gives

Z5W01W0

kBT ln~4d/L !

k S Gx

s1
1

Gy

s2
D1•••. ~A8!

As discussed in Sec. II, we assume that the size of the
membrane is much less than the persistence lengthj. Thus
the higher-order terms in the expansion in Eq.~A8! are
smaller by powers of

kBT ln~4d/L !

k
'
ln~d/L !

ln~j/a!
!1. ~A9!

Here we have used the result@13# j'a exp(2pk/kBT), with a
short-distance cutoffa of order molecular size, leading to the
hierarchy of length scalesa,L!d!j. To leading order,
then, we haveZ5W0, which is independent ofGx andGy
and therefore the lowest-order term in the expansion inb. It
is interesting to note that the above argument does not hold
for films controlled by surface tension, as discussed in Sec.
III.

APPENDIX B: SOLUTION OF THE BIHARMONIC
EQUATION

The biharmonic equation@Eq. ~18!# for a single rod is
discussed in detail in this appendix. The problem is to find
the solution to

¹4h50 ~B1!
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on a finite disk of radiusd from which a line segment of
lengthL along they axis has been removed. The boundary
conditions are

hS x50,2
L

2
<y<

L

2D5a1byy1gyyy
2, ~B2!

]

]x
hS x50,2

L

2
<y<

L

2D5bx12gxyy,

h~d!50,

]

]r
h~d!50.

Note that for the boundary conditions, the derivatives are
taken before the limite→0. It turns out to be easier to im-
pose a weaker boundary condition atr5d, namely,

h~d!5OS LdD , ]

]r
h~d!5OSLdD. ~B3!

Since we haved@L, it will suffice to keep the leading terms
in the limit L/d→0. Performing the integration by parts
yields

E
R22L

d2r ~¹2h!25E
]~R22L !

dlS ¹2h
]h

]n
2h

]¹2h

]n D
5E

2L/2

L/2

dyS h~0,y! f 1~y!2
]h

]x
~0,y! f 2~y! D ,

~B4!

where

f 1~y!5
]¹2h

]x U
x501

2
]¹2h

]x U
x502

, ~B5!

f 2~y!5¹2hux5012¹2hux502,

and, as in the text, we have denoted the finite disk of radius
d by R2 for simplicity. It is easy to check that the above
boundary value problem onR22L is completely equivalent
to the problem

¹4h5 f 1~y!d~x!1 f 2~y!
]

]x
d~x! ~B6!

on R2, provided that the conditions in Eqs.~B3! at r5d are
satisfied. The solution to Eq.~B6! can be given in terms of
the unknown functionsf 1(y) and f 2(y) as

h~x,y!5E
2L/2

L/2

dy8G1~x,y;x850,y8! f 1~y8!

1E
2L/2

L/2

dy8G2~x,y;x850,y8! f 2~y8!. ~B7!

The Green’s functionsGi , which satisfy

¹4G1~x,y;x8,y8!5d~x2x8!d~y2y8!, ~B8!

¹4G2~x,y;x8,y8!5
]

]x
d~x2x8!d~y2y8!

and obey the conditions in Eq.~B12! at r5d, are given by

G1~x,y,y8!5
1

16p
@x21~y2y8!2# lnFx21~y2y8!2

d2 G
1

1

8p

yy8

d2
~r 21r 82!1

1

16p
@d22r 22r 82#,

~B9!

G2~x,y,y8!5
x

8p H lnFx21~y2y8!2

d2 G12
yy8

d2
11

2S r 21r 82

d2 D J .
Note that the boundary conditions in Eq.~B3! do not
uniquely specifyG1 andG2, but allow different choices that
differ by subleadingO(L/d) terms atr5d. Indeed the asym-
metry inG1 with respect to the interchange ofx andy2y8 is
a result of this freedom. If we requireh and]h/]r to vanish
at r5d, thenG1 would be rotationally symmetric. The un-
known functionsf i in the above solution can now be ob-
tained self-consistently by matching to the known forms of
h and ]h/]x on L, as given by the boundary conditions in
Eq. ~B2!. We thus end up with the integral equations

a1byy1gyyy
25E

2L/2

L/2

dy8G1~x50,y;x850,y8! f 1~y8!,

~B10!

bx12gxyy5E
2L/2

L/2

dy8
]

]x
G2~x50,y;x850,y8! f 2~y8!.

~B11!

~Note that atx50, G2 and ]G1 /]x are both identically
zero.! We start with Eq.~B11! for f 2(y), which is somewhat
easier to solve. After changing variables toy5(L cosf)/2
andy85(L cosf8)/2, this equation reads

bx1Lgxycosf5
L

2E0
p

df8sinf8 f 2S L2cosf8DG8~f,f8!,

~B12!

where

G8~f,f8!5
1

8p F2 ln~2ucosf2cosf8u!22 lnS 4dL D11G .
~B13!

We now use the expansion@24#

ln~2ucosf2cosf8u!52 (
n51

`
2

n
cosnf cosnf8 ~B14!

and define a series
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sinf8 f 2S L2cosf8D5 (
m50

`

amcosmf8. ~B15!

Solving Eq. ~B12! for the am’s gives, to leading order in
d@L,

f 2S L2cosf8D5
1

sinf8 F 28bx

L lnS 4dL D 28gxycosf8G . ~B16!

The integral equation forf 1 requires more care. First, note
that the choice ofG1 in Eq. ~B9! does not lead to a vanishing
normal derivative atr5d unless the condition

E
2L/2

L/2

dy8y82f 1~y8!50 ~B17!

is satisfied. Setting up the expansion

sinf8 f 1S L2cosf8D5 (
m50

`

bmcosmf8 ~B18!

for f 1, this requirement implies

2b01b250. ~B19!

The integral equation~B10! can now be written as

a1
L2

8
gyy1

L

2
bycosf1

L2

8
gyycos2f

5
L

2E0
p

df8sinf8 f 1S L2cosf8DG~f,f8!, ~B20!

where

G~f,f8!5
L2

32p F ~cosf2cosf8!2ln~2ucosf2cosf8u!2~cosf2cosf8!2lnS 4dL D12
d2

L2
2
1

2
cos2fG

52
L2

32p
X22

d2

L2
1 lnS 4dL D2

3

4
1F2

3

4
1
1

2
lnS 4dL D Gcos2f8

1cosfH F5222lnS 4dL D Gcosf81
1

6
cos3f8J 1cos2fF2

1

2
1
1

2
lnS 4dL D2

1

3
cos2f81

1

24
cos4f8G

1 (
n53

`

cosnfF S 2n2
1

n21
2

1

n11D cosnf81
1

2 S 1

n12
1
1

n
2

2

n11D cos~n12!f81
1

2 S 1

n22
1
1

n

2
2

n21D cos~n22!f8GC. ~B21!

In going to the second form ofG(f,f8) in Eq. ~B21!, we
have used the expansion in Eq.~B14! and rearranged the
resulting expression as a series expansion so that it resembles
the left-hand side of the integral equation. Substituting the
expansion of Eq.~B18! in the integral equation~B20! and
equating the coefficients of cosnf on both sides, we obtain
the following set of linear equations for thebn :

S 2n2
1

n21
2

1

n11Dbn1 1

2 S 1

n12
1
1

n
2

2

n11Dbn12

1
1

2 S 1

n22
1
1

n
2

2

n21Dbn2250 ~n.2!,

~B22a!

F5222lnS 4dL D Gb11 1

6
b352

64

L2
by , ~B22b!

2F22
d2

L2
1 lnS 4dL D2

3

4Gb01F2
3

4
1
1

2
lnS 4dL D Gb2

52
128

L3
a2

16

L
gyy , ~B22c!

2F2
1

2
1
1

2
lnS 4dL D Gb02 1

3
b21

1

24
b452

16

L
gyy .

~B22d!

The solution to the above equations is~to leading order in
d@L)
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b05S L2d2D F4L gyy1 32

L3
aG , ~B23!

b15
32

L2lnS 4dL D by ,

b2522S L2d2D F4L gyy1 32

L3
aG ,

b350,

b452
384

L
gyy

and all otherbn are determined by the recursion relation
~B22a!. Putting the results forf 1 and f 2 into Eq. ~B4!, we
find Eq. ~21!, with s15s254p.
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